首页> 外文OA文献 >Inference-Based Similarity Search in Randomized Montgomery Domains for Privacy-Preserving Biometric Identification
【2h】

Inference-Based Similarity Search in Randomized Montgomery Domains for Privacy-Preserving Biometric Identification

机译:随机蒙哥马利域中基于推理的相似性搜索   隐私保护生物识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Similarity search is essential to many important applications and ofteninvolves searching at scale on high-dimensional data based on their similarityto a query. In biometric applications, recent vulnerability studies have shownthat adversarial machine learning can compromise biometric recognition systemsby exploiting the biometric similarity information. Existing methods forbiometric privacy protection are in general based on pairwise matching ofsecured biometric templates and have inherent limitations in search efficiencyand scalability. In this paper, we propose an inference-based framework forprivacy-preserving similarity search in Hamming space. Our approach builds onan obfuscated distance measure that can conceal Hamming distance in a dynamicinterval. Such a mechanism enables us to systematically design statisticallyreliable methods for retrieving most likely candidates without knowing theexact distance values. We further propose to apply Montgomery multiplicationfor generating search indexes that can withstand adversarial similarityanalysis, and show that information leakage in randomized Montgomery domainscan be made negligibly small. Our experiments on public biometric datasetsdemonstrate that the inference-based approach can achieve a search accuracyclose to the best performance possible with secure computation methods, but theassociated cost is reduced by orders of magnitude compared to cryptographicprimitives.
机译:相似性搜索对于许多重要应用程序都是必不可少的,并且经常涉及基于高维数据与查询的相似性来进行大规模搜索。在生物特征识别应用中,最近的漏洞研究表明,对抗性机器学习可以通过利用生物特征相​​似性信息来危害生物特征识别系统。现有的生物特征隐私保护方法通常基于安全生物特征模板的成对匹配,并且在搜索效率和可伸缩性方面存在固有的局限性。在本文中,我们提出了一个基于推理的框架,用于在汉明空间中保持隐私的相似性搜索。我们的方法基于模糊距离度量,该距离度量可以隐藏动态间隔中的汉明距离。这种机制使我们能够系统设计统计上可靠的方法来检索最可能的候选对象,而无需知道确切的距离值。我们进一步建议应用蒙哥马利乘法来生成可以经受对抗性相似性分析的搜索索引,并表明随机蒙哥马利域中的信息泄漏可以被忽略得很小。我们在公共生物特征数据集上的实验表明,基于推理的方法可以通过安全的计算方法获得接近最佳性能的搜索精度,但是与密码本原相比,相关成本降低了几个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号